Miintz Spectral Methods with Applications to
Some Singular Problems

Chuanju Xu ¥F£4E

School of Mathematical Sciences, Xiamen University

Collaborators: Dianming Hou (Xiamen U)

Brown U June 20, 2018

Chuanju Xu ¥f£4H  (Xiamen University) June 20,2018  ICERM, Brown University Miintz Spectral Methods



Motivation

m Integro-differential equations

m Fractional differential equations
m Related works

Generalized fractional Jacobi polynomials

m Preliminary

m Fundamental properties of GFJPs

m Projection, interpolation, and related error estimates

Miintz spectral method for some singular problems
m Fractional integro-differential equations

m Fractional elliptic equations

m Time fractional diffusion equations

Chuanju Xu ¥f£4H  (Xiamen University) June 20,2018  ICERM, Brown University Miintz Spectral Methods



Motivation -differential equations
nal differential equations
Related works

Motivation

We aim at constructing efficient numerical methods for a class of
equations having singular solutions:

u = aqu(t) + aoli'u(t) + f(t), te€lu>0,

u(0) = 0.

bu(x) — D{u(x) = flx), x€l,1<p<2,

u(0) = 0,u,(0) = uy.

Du(x,t) — Ou(x,t) = flx, 1), Ix A, 0<a<l,

u(x,0) = up,

u(x, f)|on = 0.

where I = [0, 1], @1 and a2 are real coefficients, and the operators
I'', DY denote the fractional integral and derivative.
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Volterra integral equation

u(x) + /Ox(x —5) PK(x,5)u(s) = g(x), x€ A:=(0,1),0 < pp < 1,

where K(x, s) is a kernel function.

It has been well known [Brunner 2004] that: if g € C"(A) and
K € C"(A x A) with K(s,s) # 0 in A, then the solution can be
expressed as

u(x) = Z fyj,kx”k(l*“) + u(x),
(k) EG
where

G :={(j, k) : j, k are non-negative integers s.t. j + k(1 — ) < m},

7,k are constants, and u,.(-) € C"(A).
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Bou —d2u=f telxe A ac(0,1),
u(=1,t) =u(l,t)=0 tel

or
Ou—Pu=fteclxecAhac(0,1),
u(—=1, ) =u(l,t)=0 tel,
u(x,0) = up(x) x€A.
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Solution singularity

Solution representation in term of Mittag-Leffler function:

i=1
)

> (70 0)(1 = 1) B (A1 = 7))dr] 3,

—1

)= Y- [ [ )t = 1) B =M= 7))

where

—831%()6) = )\ﬂﬁl‘(x), w,(ﬂ:l) =0.

Even the forcing function f'is smooth, the solution # may exhibit
singularity with the leading order * at the starting point # = 0 like the
one for the Volterra integral equations.
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Related works

The main difficulties:

- the operators /) and DY are non-local;

- the solutions are usually singular near the boundary or at the starting
time.
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Spectral methods

Weak form of the TFDE
Rocu(x, t) — Au(x,t) = flx,t), t € [:= (0,T),x € A := (—1,1),
u(—=1,0)=u(l,t) =0, t € L

Weak form: find u € B2 (Q) := H°(A, L*(I)) N L*(A, Hy(I)), such
that

A(u,v) + B(u,v) = (f,v), Vve B2(0), (1)
where O = A x I,

A(u,v) := (oat%u, t@?v)g, B(u,v) := (Ocu, 0xv)o.
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Spectral approximation

Let L := (M, N), the space-time Galerkin spectral method reads: Find
uy, € PY(A) @ Py(l), such that

A(ug,ve) + Blug,ve) = F(vp), Vvp € P&(A) ® Py(1).

Theorem (Li & Xu, 2009)
Ifu e L2(LLH°(N) "N HY (I H(A)),y > 1, 0 > 1, then

T
cos 10,7 (u — ur)llo,o + [|9x(u — uz)lo.0

SN lulloq + N2 7TM 7 fulloy

M |lullg,g + M |u|

0,0 + N7 [Jull1 5.
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Other related works

» Polynomial spline collocation method for IDEs:

[Brunner 1986], [Tang 1993], [Brunner et al. 2001],
[Rawashdeh et al. 2004], [Tarang 2004].

> Spectral method for Volterra integral equations(VIEs) with
nonsmooth solution:

[Chen and Tang 2010], [Li, Tang, and Xu 2015], [Stynes and
Huang 2016].

» Non-polynomial basis for FDEs:
[Zayernouri and Karniadakis 2013, 2014, ...], [Chen, Shen, and
Wang 2016].

» Mapped Jacobi and Miintz-Legendre functions for Elliptic
equations: [Shen and Wang 2016].
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Generalized fractional Jacobi polynomials Fundamental properties of GFJPs
Projection, interpolation, and related error estimates

Miintz polynomials

The well-known Weierstrass theorem states:
every continuous function on a compact interval can be uniformly
approximated by algebraic polynomials.

This result was generalized by Bernstein 1912, and proved by
Miintz (theorem) 1914:

n
the Miintz polynomials of the form Z apx™ with real coefficients,
k=0
ie., span{x™ k=0,1,...}, are dense in C°[0, 1] if and only if
o0

Z A1 = 400, where {\o, M, A, ... } is a sequence of distinct

k=1
positive numbers such that 0 = \g < A1 < ... = Q.

Extension to 22(0, 1) by Szasz 1916.
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Generalized fractional Jacobi polynomials

Generalized fractional Jacobi polynomials (GFJPs)

We will make new use of Miintz polynomial spaces defined by
PA(I) = span{1,x*,x**,--- XM}, 0< A< 1.
Generalized fractional Jacobi polynomials
Jﬁ"ﬁ(Qx’\—l), a, B> —1,
:ﬁ/\(x) = %—lﬂx/\‘]gyl(2x)\ - 1)a a > _175 =-1
L () — NP2 1), a= 1,8 > —1,
—(1 =Mt = 1), a=8=—1,

.]a

n++4

where J3° (x) denote the classical Jacobi polynomials, and

0, a,8>—1,

l=¢ 1,a=-1,>~-1or a>—-1,8=—1,

2, a=p0p=-1.
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Some fundamental properties of GFJPs

Lemma

The generalized fractional Jacobi polynomials J,, 8 ’)‘(x) are mutually
orthogonal with respect to the weight function
wOBA(x) = A1 —xM)xBTDAL o B> 1,0 < A< 1, ie,

1
/ WP )P () I (k) = 98P S,
0

where
B Fn+a+1)0(n+8+1) .
" Cn+a+ B+ 1nl'(n+a+5+1)
Furthermore,

BJIPANx) = (n+ a + B+ DI ),
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Sturm-Liouville problem:

Lemma

The generalized fractional Jacobi polynomials {Ja B }n o With

«, B > —1 satisfy the following Sturm-Liouville problem:
( a,fB, /\ 18 {)\ x’\)a“xﬁ”laxjﬁ,w”\(x)}

— _0.}?75‘_]?757)\()‘.)’

where 057 = n(n+a + 8+ 1).
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New differentiation operators

Differentiation operators:

0 .__ . d ._ d 2 .__
DY i=1s, Dyi= =154, D} =DyDy, -,
k

D .-=D\Dy---Dy, k=0,1,---
AT AN As — Y .

Define:

Tl v+ Ax) — v(x)
Dyl = Ail—rgﬁ (x + Ax)* —x* 7

_ i Ax) — v(x)
D! = 1 v+ .
) A0 (x + Ax)A — xA

Then D} v(x) exists if and only if TD}v(x) = “D}v(x), and
Div(x) = TDiv(x) = ~Div(x).
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Connection with local fractional derivatives

Remark:

- This derivative was called Hausdorff derivative, introduced in [Chen
06] for fractal time-space fabric, and studied in [Weberszpil et al.
2015], [Chen et al. 2017], [Chen 2017], ...

- It is also closely related to the local fractional derivatives used in
Fractals; see [Li et al. 2013], [Lutton & Tricot (eds), Fractals.
Springer, 1999], [Chen et al. 20107, ...
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Projection, interpolation, and related error estimates

Using this new derivative, and set the weight function:

P (x) = (1 — M) = A AP ().

(e 9]

Then the fractional Jacobi polynomials {Jf 8 7)\}n=0 satisfy the

following singular Sturm-Liouville problem:
ﬁg\xﬂ.}?,ﬁ,)\(x) _ U,O,"ﬁJ,f"ﬁ’)‘(x),

where 007 = n(n + o + B + 1), the singular Sturm-Liouville
operator Ci’ﬁ is defined by

L) = =@ (x)) DR { (1 — ) BHDAD ()}
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Projection, interpolation, and related error estimates

Lemma

The new defined k-th order derivatives of the fractional Jacobi
polynomials are orthogonal with respect to the weight w®TFBRA (x),
ie.,

1
/ WA ) DR () DA 22 (o) = Iy G,
0

where

Za,,@_F(”+a+1)r(n+5+1)F(n—|—k—|—o¢+5+1)
ke nta+ B+ 1)n—-kT2n+a+B+1)

Moreover, we have

where
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L, ;. (I)-orthogonal projector with v, § > —1

Let my o L2, 5, () = Py(I) be the L2, 5 x-orthogonal projector
defined by: forall v € Limw (1), Ty oBAV € PR(I) such that

(v — WNywa,B,)\v, VN)wa,B,)\ = 0, VVN € Px(l).

Equivalently, TN o2 CaN be characterized by:

Tnwo a2 V(X Zaaﬁﬁw( ),

where J57(x) are the fractional Jacobi polynomials, and

76 (V ﬁ757A)wavﬁ A
n , ,\ *
MR P12 s
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Some spaces

To measure the projection error, we need non-uniform fractional
Jacobi-weighted Sobolev spaces:

B o (D) i={v:D\veL? pin),0<k<m}, m=0,1,2,-,

equipped with the inner product, norm, and semi-norm:

(u Vv Bm = Z D u D)\ wothk, Btk
HVHm wBA = (V, V)E?QQ ) |V|m WP = HDKIVHO wotmftmA -
) w B, ’ ’

The special case A = 1 gives the classical non-uniform Jacobi-
weighted Sobolev spaces:

Bzaﬁ,l (D) :== {V : 8fv € Lia+k,6+/f,1(1), 0<k< m}
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Projection, interpolation, and related error estimates

Lemma
The orthogonal projector Ty ,,a.5.» admits the following error

estimate: for any v(x%) € BZZ;(I), and 0 <[/ <m<N+1,

HDI)\ (v— TN B\ V) ‘|07wa+l,ﬂ+l,/\

<c %(N“‘ m) |9 {v(x3) g et omr

For a fixed m, the above estimate can be simplified as

”Dl/\(V — 7TN7wa,ﬁ,)\V) H07wa+l,ﬁ+l,)\ < CNI*’”HQ’C"{V(x%)}H07wa+m,ﬁ+m,1.

In particular, for [ = 0, 1, we have
1
v — Ty sarlo s < N1 {VER) Hiowesmaims

1
Hax(v - WNywa,ﬂ,)\v) “07‘:}0,[3,/\ S CNlimHa;n{V(XX)} H07wa+m,[3+m,17

where &®PA = N\T1(1 — xM)atlyBAFL
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L2, ;,—projector with o, § > —1.

Define the fractional polynomial spaces for o, 8 > —1:
Sf/ = span{ ”6’ (x),i = 0,1,2,-~-,N}
L2, 5 n—projector Ty jas: L2, 55 (1) — Sfi,f, e L2, s.(),
(V= Ty a2V, VN)yasr =0, Yy € Sﬁf

For special case § = —1, we define the dual fractional polynomial
space of Sj\l/;l as follows:

10 1,0,A .
a0 = span{(l — )L OA G = 0,1,2, - N}
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Approximation results

Theorem

1
For any v(x) such that v(x>) € B", 5, (I),m > 1, its orthogonal
projection Ty 0,52V admits the following optimal error estimates:

1
IV = Ty waavllowass <NVl wmramts,

1
10:(v = Ty av) logeer < ENTTOIVEN) g ot o,

where P = )\_1(1 — x)‘)a+1xﬂ>‘+1.

Remark

It is shown that even if v(x) is singular its projection TN won 82V Can be
a very good approximation to v(x) if \ is properly chosen such that
v(x'/) is smooth or v(x*/*) € B", 5. (1) for large m.
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Let hﬁ’f (x) be the generalized Lagrange basis function:

Ié; N x)‘ —xf\

a, _ i .

hj7,\ (X)— H x.)\_x?\a OSJSNa
i=0,i# S

where xg < x1 < -+ < xy_1 < Xy are zeros in IofJf\“,’fi)‘ (x). Itis
clear that the functions h]?‘/’\ﬁ (x) satisfy

hﬁ;\ﬁ (x,-) = 5,]

Letz(x) = x*. Then z; := z(x;) = x}, 0 <i < N are zeros of
k) ’1
J]O\Zlfl (X), and
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Projection, interpolation, and related error estimates

We define the interpolation operator Iﬁ’ﬁ

I3v(x) = Zvoc,)h, ().

j=0

Lemma
1
For any v(xX) € B}llﬁ we have

Hla VHO waBA S C(| 0weBx + N IHD)\VHOUJQH B+1, A)

For any v(x'/*) € B'"’l(l) m>1,and0<1<m<N+ 1, it holds
DA (v = Iy:30) llo gt

g C\/@(N _|_ m) (m+1)/2 ||a)’fn {V(X% ) } ||O7wa+m,6+m,l .

For given m,

1
||D[)\ (V — Iﬁjf\/) ||0,wa+l,ﬁ+l,)\ S CNl—mHa)rcn{V(xX)}||O’wa+m,6+m,l .
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Interpolation error in L°°—norm

Lemma

1 1
If-1<a,p< —§,v(x1/)‘) € Bys(I), m > 1. Then

Iy = I35 Vlloo < N2 |OFV(A) g gyt
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Miintz spectral method for some singular problems Time fractional diffusion equations

Petrov-Galerkin method for IDEs

Consider the Petrov-Galerkin based Miintz spectral method for IDEs:
Find uy € S?V’;l(l), such that

(uﬁv, VN) =dai (MN, VN) + ag(olfu]v, VN) + (f, VN), VVN S IfNyl/\’O(]).
Notice the facts

CL)L%_Q»\VN — )\t_)\(l — l)\)VN S V]:CIA’O(I)a VVN S S%Xl(])

We have the equivalent weighted Galerkin form: Find uy € 5&}3\/;1 (),
such that

(u§V’ VN) Lioea=d1 (qu VN) 1,12 +az (OI#uNa VN) 1,12
w w 1 w
+(/[7VN) 1,1 2 vVN € S?\;,)\ (I)

WA
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Theorem

If the coefficients a1 and as satisfy

Vel (i + 1/2)
or(1/2)

a < 0, ’a2’ <

or

I'(1/2 1
N S NS N Y
e 2uel'(n+1/2) 2
Then the Miintz spectral approximation problem admits a unique
solution. Furthermore, if the exact solution u(t) such that

u(t%) € B", 1.1 (1), the following optimal error estimate holds:

= unllowo-13 < N[ u(E3) g gomn-1.1.
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Miintz spectral method for fractional elliptic equations

bu(x) — D{u(x) = flx), xelL1<p<2,
u(0) = 0,u,(0) = uy.

Applying Riemann-Liouville integral of order p — 1 to the both sides
of the equation, and noticing that

PID0u(x) = P P Pug = Dugy = 1ty — u,(0) =y — uy,
we get the following equivalent integro-differential equation:
ue = b I u(x) =B Hx) +co, xel1<p<2,
{ u(0) = 0.

Therefore the Miintz spectral method constructed for IDEs can be
directly applied.
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TFDE

Du(x,t) — 02u(x,t) = flx, 1), Ix A, 0<a<l,
u(x,0) =0,
u(x, t)|3A =0.

Weak form: given f'satisfying o/}’ /2 flx,t) € L*(Q2), find
u € HH2(Q) :=oH*2(I, L*(A)) N L2(I, Hy(A)) such that
)

Alu,v) = F(v), v € HM*(Q
where the bilinear form A(-, -) is defined by
A(u,v) = (oD} %u, DY *v)g + (Do, D),

)

and the functional F(+) is given by

F) = (fiv)a.
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Miintz spectral method for some singular problems Time fractional diffusion equations

Theorem

Forany 0 < u < 1and OIf/Qfe L%(Q)), the problem is well-posed.
Furthermore, if u is the solution, then it holds

2
lull 3202y S o2t *flo.c-

Let
Pyy(A) == Py(A) N Hy(A),
Sﬁ;l(l) = span{J?ﬁl’)‘(x),i =0,1,2,---,N},ao > —1.
L:= (M,N),
ST(Q) = PY(A) @ Sy ().
Miintz spectral Galerkin method: find u; € S (€2), such that
A(ur,ve) = F(ve), Vv € S7(Q).
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Theorem

LetO < p<1,—1 < a<—u/2. Suppose
u(x, i) € B, (I HP(A) NB™, 1 (LHy(A)),m>1,0 > 1.
Then the solution uy of the Miintz spectral approximation satisfies:

| — ”LHHM(Q)
SNE[0C ) 0.4l yotmon 1
1_ —
+N2 mM UHHath(',tl//\)Ho’,AH07wa+m,m71,l

AM|V]|os + M V]l

+N_m H ||a;nV(, tl/A) H 17A H07wa+m,m—1,l .
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Miintz spectral method for some singular problems

Classical elliptic problems

Weak form: Forfe L2, ,, ;,(I), findu € B! _, _, \ (), such that
A(u,v) = F(v), Wve B}J_L_M(I),
where the bilinear form A(+, -) is defined by
A(u,v) = (Dau(x), 022 @)v(x)}),
and the functional F(+) is given by

F(v) = (flx), v(x)) 0.2/x-2.2-
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In order to prove the well-posedness of this problems, we need
following Poincaré inequality:

For all A € (0, 1], Poincaré inequality in B, _, _, , (/) holds

HVHO,UJ_l’_l’)\ S C‘|8xv||07w0'2/>‘72’>‘7 VV € Bi},I,,L/\ (1)

Theorem

Forallfe Lil, 1/r_3. (1), the discrete problem is well-posed.
Furthermore, if u is the solution, it holds

Jully 1.1 < el prainan.
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Miintz spectral method: Find uy € B!, , ,(1) N S;,lx_l([), such that

Aluy, v) = F(wx), Wy € BL ia(D) N Sy3 ™ (D).

Theorem

Forallfe Lil« 1/r_3.» (1), the Miintz spectral discrete problem admits
a unique solution uy, which satisfies

loanlly 11 < Cllllgutann-sn-

Furthermore, if u(x'/*) e By 11 (1), then

|t — ]|y 110 < N[O U (A [[g 11,1
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Miintz spectral method for some singular problems ime fra sion equations

Fractional Jacobi Spectral- Collocatmn Method for VIEs

Volterra integral equation
u(x) = g(x) +/ (x — ) HK(x,s)u(s)ds, 0<pu<1, xel:=]0,1].
0

Consider the fractional Jacobi spectral-collocation method as follows:
find fractional polynomial u3y € Py(I), such that

un(x;) = g(x;) + (Kuy) (i), 0<i<N,

where the collocation points {x;}_, are roots of J}‘i‘,’ﬁ A(x)

b

(o)) = [ " (50— 5) K xi,)p ().
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Theorem

Let u(x) be the exact solution to the Volterra integral equation and
u(x) is the numerical solution of the fractional Jacobi

spectral-collocation problem. Assume 0 < p<1,—1 < a,5 < —%,
K(x,s) € C"™(1,1) and u(x%) € Bgi’[lg(l),m > 1. Then we have

1 1 1
e — oo < N2 (|07 )[lo gyem s + N2 Tog NK*[u]oc),

where K* is a constant only depending on K(-, -).
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Numerical results: Example 1

» We start by considering the IDEs:

u = u(t) + olf'u(t) +ft), tel >0,
u(0) =0,
with the source term f{¢) = 1/2¢~'/2 —T'(3/2)t — ¢'/? and

w=1/2.
The exact solution: u(7) = ¢'/2.
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Example 2

» Consider IDEs with source term

flty=1- L Adp sy \/gtx/ﬁ—l _ T(/3+1) 3 _ /3

T(2+a) D(V3+14p)

w=20.9.

Exact solution: u(f) = + V3.
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Example 3

» Consider an arbitrary smooth force function f{#) = sin(47¢).

u(t) = 2mi® + ’73,1t3+“ + Z ’yjyktﬁk“ + uy(2).
Jkp>344

where +;  are constants, and u,(-) € C>(/).

It is seen that u(#'/*) € Bi%?fffz/)ﬁe(l) forany € > 0.
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TFDE

» Consider TFDE for i+ = 0.1,0.9. The fabricated exact solution
is:

u(x,t) = sinmtsin mx.
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Figure: Error decays of the numerical solutions with respect to the
polynomlal degrees for the smooth exact solution.
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TFDE

» Consider TFDE with smooth force function
Sfx, t) = sin(mx)sin(rt), the exact solution is unknown.

Serve the numerical solution calculated with M = 40, N = 100
as the “exact” solution.
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Example 4

» Consider the elliptic problem

—0%u(x) = flx), x € 1,
u(0) =u(l) =0,
with two source terms:

(i) flx) = % sin(mx)

(i) flx) = L2014/
Case (i): u(x) = sin(mx)

Case (ii): u(x) = x'2/13 — x
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Case (1) with smooth solution
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Case (i1) with limited regular solution
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Concluding remarks

- We have developed and analyzed a fractional spectral method for a
kind of fractional integro-differential equations.

- The proposed method makes use of the fractional polynomials, also
known as Miintz polynomials, constructed through a transformation
of the traditional Jacobi polynomials.

- If \ is taken to be 1/¢ with ¢ being integer, then the Miintz
polynomial space {P(I) = span{1,x*,x**, .- "} possesses good
approximation property: the best approximation to smooth functions
is of exponential convergence w.r.t. N like the traditional polynomials,

although the convergence is slightly slower. In fact Py, (1) C PY(D).
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- The most remarkable feature of the method is its capability to
achieve spectral convergence for the solution with limited regularity.

- The choice of X is also of importance for the efficiency of the
method, which can be made according to the following strategy:

Case I: if the solution is smooth, the optimal value is A = 1;

Case II: if p is a rational number p/q, the best choice is A = 1/¢; if p
is an irrational number, there is no suitable value of \ to make u(r'/*)
smooth. In this case, we can take A = 1/¢ with a reasonably large ¢
such that u(7'/) is smooth enough.
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Implementation issues

- Nonlocal terms must be evaluated by using numerical quadratures.
For example, in the Muntz spectral method for the integro-differential
equation, evaluation of the integral term (o//'uy, vy) makes use of the
zeros of the orthogonal polynomial and the Gauss weights associated
to the nonclassical weight function (1 — X )

- For the classical orthogonal polynomials, e.g. Jacobi, Laguerre, and
Hermite polynomials, formulae for the coefficients in the three-term
recurrence are known in closed form. However for the nonclassical
weight functions, their recurrence coefficients are not explicitly
known. In this case, numerical techniques such as Stieltjes procedure
or Chebyshev algorithm will be used.
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- Chebyshev algorithm consists of calculating the desired coefficients
from a three-step algorithm and the moments of the underlying weight
function, i.e.,

1
M, = / x(1— x§)“dx.
0
Making the variable change x = #* gives
1
M, = )\/ AL —Rde = ABOA(r+ 1), p+1).
0

- As pointed in [Esmaeili et al. 2011] the calculation of the moments
M, can be numerically problematic when the number of points is
large: in order to obtain the double precision entries of the matrices,
one would have to perform with about 40 digits operations.
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Future extensions

Possible extensions

- Higher dimensional problems
- Other equations having corner singularities

- Using Miintz polynomials in the FE framework, i.e., Miintz spectral
element methods

- Make use of more general fractional polynomial space:

span{1,xM x*2, ... XMW
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Thank you'!
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