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Motivation

We aim at constructing efficient numerical methods for a class of
equations having singular solutions:{

ut = a1u(t) + a2Iµt u(t) + f(t), t ∈ I, µ ≥ 0,

u(0) = 0.{
bu(x)− Dρ

xu(x) = f(x), x ∈ I, 1 < ρ < 2,

u(0) = 0, ux(0) = u1.
Dα
t u(x, t)− ∂2x u(x, t) = f(x, t), I× Λ, 0 < α < 1,

u(x, 0) = u0,
u(x, t)|∂Λ = 0.

where I = [0, 1], a1 and a2 are real coefficients, and the operators
Iµt ,D

ρ
x denote the fractional integral and derivative.
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Volterra integral equation

u(x) +
∫ x

0
(x− s)−µK(x, s)u(s) = g(x), x ∈ Λ := (0, 1), 0 < µ < 1,

where K(x, s) is a kernel function.
It has been well known [Brunner 2004] that: if g ∈ Cm(Λ̄) and
K ∈ Cm(Λ̄× Λ̄) with K(s, s) ≠ 0 in Λ̄, then the solution can be
expressed as

u(x) =
∑

(j,k)∈G

γj,kxj+k(1−µ) + ur(x),

where

G := {(j, k) : j, k are non-negative integers s.t. j+ k(1− µ) < m},

γj,k are constants, and ur(·) ∈ Cm(Λ̄).
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TFDE

{ R∂αt u− ∂2x u = f t ∈ I, x ∈ Λ, α ∈ (0, 1),

u(−1, t) = u(1, t) = 0 t ∈ I.

or 
C∂αt u− ∂2x u = f t ∈ I, x ∈ Λ, α ∈ (0, 1),

u(−1, t) = u(1, t) = 0 t ∈ I,

u(x, 0) = u0(x) x ∈ Λ.
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Solution singularity

Solution representation in term of Mittag-Leffler function:

u(x, t)=
∞∑
i=1

[ ∫ t

0
(f(·, τ), ψi)(t− τ)α−1Eα,α(−λi(t− τ)α)dτ

]
ψi(x)

= tα
∞∑
i=1

[ ∫ 1

0
(f(·, τ t), ψi)(1− τ)α−1Eα,α(−λitα(1− τ)α)dτ

]
ψi(x),

where
−∂2xψi(x) = λiψi(x), ψi(±1) = 0.

Even the forcing function f is smooth, the solution u may exhibit
singularity with the leading order tα at the starting point t = 0 like the
one for the Volterra integral equations.
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The main difficulties:

- the operators Iµt and Dρ
x are non-local;

- the solutions are usually singular near the boundary or at the starting
time.
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Spectral methods

Weak form of the TFDE{ R∂αt u(x, t)−△u(x, t) = f(x, t), t ∈ I := (0,T), x ∈ Λ := (−1, 1),

u(−1, t) = u(1, t) = 0, t ∈ I.

Weak form: find u ∈ B
α
2 (Q) := Hs(Λ,L2(I)) ∩ L2(Λ,H1

0(I)), such
that

A(u, v) + B(u, v) = (f, v), ∀v ∈ B
α
2 (Q), (1)

where Q = Λ× I,

A(u, v) := (0∂
α
2
t u, t∂

α
2
T v)Q, B(u, v) := (∂xu, ∂xv)Q.
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Spectral approximation

Let L := (M,N), the space-time Galerkin spectral method reads: Find
uL ∈ P0

M(Λ)⊗ PN(I), such that

A(uL, vL) + B(uL, vL) = F(vL), ∀vL ∈ P0
M(Λ)⊗ PN(I).

Theorem (Li & Xu, 2009)
If u ∈ L2(I,Hσ(Λ)) ∩ Hγ(I,H1

0(Λ)), γ > 1, σ ⩾ 1, then√
cos

πα

2
∥∂

α
2
t (u− uL)∥0,Q + ∥∂x(u− uL)∥0,Q

≲ N
α
2
−γ∥u∥0,γ + N

α
2
−γM−σ∥u∥σ,γ

+M−σ∥u∥σ,α
2
+M1−σ∥u∥σ,0 + N−γ∥u∥1,γ .
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Other related works

▶ Polynomial spline collocation method for IDEs:

[Brunner 1986], [Tang 1993], [Brunner et al. 2001],
[Rawashdeh et al. 2004], [Tarang 2004].

▶ Spectral method for Volterra integral equations(VIEs) with
nonsmooth solution:

[Chen and Tang 2010], [Li, Tang, and Xu 2015], [Stynes and
Huang 2016].

▶ Non-polynomial basis for FDEs:

[Zayernouri and Karniadakis 2013, 2014, …], [Chen, Shen, and
Wang 2016].

▶ Mapped Jacobi and Müntz-Legendre functions for Elliptic
equations: [Shen and Wang 2016].
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Müntz polynomials

The well-known Weierstrass theorem states:
every continuous function on a compact interval can be uniformly
approximated by algebraic polynomials.

This result was generalized by Bernstein 1912, and proved by
Müntz (theorem) 1914:

the Müntz polynomials of the form
n∑

k=0

akxλk with real coefficients,

i.e., span{xλk , k = 0, 1, . . . }, are dense in C0[0, 1] if and only if
∞∑
k=1

λ−1
k = +∞, where {λ0, λ1, λ2, . . . } is a sequence of distinct

positive numbers such that 0 = λ0 < λ1 < ...→ ∞.

Extension to L2(0, 1) by Szász 1916.
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Generalized fractional Jacobi polynomials (GFJPs)
We will make new use of Müntz polynomial spaces defined by

Pλ
N(I) = span{1, xλ, x2λ, · · · , xNλ}, 0 < λ ≤ 1.

Generalized fractional Jacobi polynomials

Jα,β,λn+ℓ (x) =


Jα,βn (2xλ − 1), α, β > −1,
n+α+1
n+1 xλJα,1n (2xλ − 1), α > −1, β = −1,

n+β+1
n+1 (1− xλ)J1,βn (2xλ − 1), α = −1, β > −1,

−(1− xλ)xλJ1,1n (2xλ − 1), α = β = −1,

where Jα,βn (x) denote the classical Jacobi polynomials, and

ℓ =


0, α, β > −1,

1, α = −1, β > −1 or α > −1, β = −1,

2, α = β = −1.
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Some fundamental properties of GFJPs

Lemma

The generalized fractional Jacobi polynomials Jα,β,λn (x) are mutually
orthogonal with respect to the weight function
ωα,β,λ(x) = λ(1− xλ)αx(β+1)λ−1, α, β ≥ −1, 0 < λ ≤ 1, i.e.,∫ 1

0
ωα,β,λ(x)Jα,β,λn (x)Jα,β,λm (x)dx = γα,βn δm,n,

where

γα,βn =
Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)n!Γ(n+ α+ β + 1)
.

Furthermore,

∂xJα,β,λn (x) = (n+ α+ β + 1)Jα+1,β+1,λ
n−1 (x).
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Sturm-Liouville problem:

Lemma

The generalized fractional Jacobi polynomials
{
Jα,β,λn

}∞
n=0

with
α, β ≥ −1 satisfy the following Sturm-Liouville problem:

(ωα,β,λ(x))−1∂x
{
λ−1(1− xλ)α+1xβλ+1∂xJα,β,λn (x)

}
= −σα,βn Jα,β,λn (x),

where σα,βn = n(n+ α+ β + 1).
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New differentiation operators

Differentiation operators:

D0
λ := Id, Dλ := d

dxλ := d
λxλ−1dx , D2

λ := DλDλ, · · · ,

Dk
λ :=

k︷ ︸︸ ︷
DλDλ · · ·Dλ, k = 0, 1, · · · .

Define:

+D1
λv(x) := lim

∆x→0+

v(x+∆x)− v(x)
(x+∆x)λ − xλ

,

−D1
λv(x) := lim

∆x→0−

v(x+∆x)− v(x)
(x+∆x)λ − xλ

.

Then D1
λv(x) exists if and only if

+D1
λv(x) =

−D1
λv(x), and

D1
λv(x) =

+D1
λv(x) =

−D1
λv(x).
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Connection with local fractional derivatives

Remark:

- This derivative was called Hausdorff derivative, introduced in [Chen
06] for fractal time-space fabric, and studied in [Weberszpil et al.
2015], [Chen et al. 2017], [Chen 2017], ...

- It is also closely related to the local fractional derivatives used in
Fractals; see [Li et al. 2013], [Lutton & Tricot (eds), Fractals.
Springer, 1999], [Chen et al. 2010], ...
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Using this new derivative, and set the weight function:

ω̂α,β,λ(x) := (1− xλ)αxβλ = λ−1x1−λωα,β,λ(x).

Then the fractional Jacobi polynomials
{
Jα,β,λn

}∞
n=0

satisfy the
following singular Sturm-Liouville problem:

Lα,β
λ Jα,β,λn (x) = σα,βn Jα,β,λn (x),

where σα,βn = n(n+ α+ β + 1), the singular Sturm-Liouville
operator Lα,β

λ is defined by

Lα,β
λ v(x) = −(ω̂α,β,λ(x))−1D1

λ

{
(1− xλ)α+1x(β+1)λD1

λv(x)
}
.
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Lemma
The new defined k-th order derivatives of the fractional Jacobi
polynomials are orthogonal with respect to the weight ωα+k,β+k,λ(x),
i.e., ∫ 1

0
ωα+k,β+k,λ(x)Dk

λJ
α,β,λ
n (x)Dk

λJ
α,β,λ
m (x)dx = ĥα,βn,k δm,n,

where

ĥα,βn,k =
Γ(n+ α+ 1)Γ(n+ β + 1)Γ(n+ k+ α+ β + 1)

(2n+ α+ β + 1)(n− k)!Γ2(n+ α+ β + 1)
.

Moreover, we have

Dk
λJ

α,β,λ
n (x) = d̂α,βn,k J

α+k,β+k,λ
n−k (x),

where

d̂α,βn,k =
Γ(n+ k+ α+ β + 1)

Γ(n+ α+ β + 1)
.
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L2ωα,β,λ(I)-orthogonal projector with α, β > −1

Let πN,ωα,β,λ : L2
ωα,β,λ(I) → Pλ

N(I) be the L2ωα,β,λ-orthogonal projector
defined by: for all v ∈ L2

ωα,β,λ(I), πN,ωα,β,λv ∈ Pλ
N(I) such that

(v− πN,ωα,β,λv, vN)ωα,β,λ = 0, ∀vN ∈ Pλ
N(I).

Equivalently, πN,ωα,β,λ can be characterized by:

πN,ωα,β,λv(x) =
N∑

n=0

v̂α,βn Jα,β,λn (x),

where Jα,β,λn (x) are the fractional Jacobi polynomials, and

v̂α,βn =
(v, Jα,β,λn )ωα,β,λ

∥Jα,β,λn ∥2
0,ωα,β,λ

.
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Some spaces
To measure the projection error, we need non-uniform fractional
Jacobi-weighted Sobolev spaces:

Bm
ωα,β,λ(I) :=

{
v : Dk

λv ∈ L2ωα+k,β+k,λ(I), 0 ≤ k ≤ m
}
, m = 0, 1, 2, · · · ,

equipped with the inner product, norm, and semi-norm:

(u, v)Bm
ωα,β,λ

=

m∑
k=0

(Dk
λu,D

k
λ)ωα+k,β+k,λ ,

∥v∥m,ωα,β,λ = (v, v)1/2Bm
ωα,β,λ

, |v|m,ωα,β,λ = ∥Dm
λv∥0,ωα+m,β+m,λ .

The special case λ = 1 gives the classical non-uniform Jacobi-
weighted Sobolev spaces:

Bm
ωα,β,1(I) :=

{
v : ∂kxv ∈ L2ωα+k,β+k,1(I), 0 ≤ k ≤ m

}
.
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Lemma
The orthogonal projector πN,ωα,β,λ admits the following error
estimate: for any v(x

1
λ ) ∈ Bm,1

α,β(I), and 0 ≤ l ≤ m ≤ N+ 1,

∥Dl
λ(v− πN,ωα,β,λv)∥0,ωα+l,β+l,λ

≤ c
√

(N−m+1)!
(N−l+1)! (N+ m)(l−m)/2∥∂mx

{
v(x

1
λ )
}
∥0,ωα+m,β+m,1 .

For a fixed m, the above estimate can be simplified as

∥Dl
λ(v− πN,ωα,β,λv)∥0,ωα+l,β+l,λ ≤ cNl−m∥∂mx

{
v(x

1
λ )
}
∥0,ωα+m,β+m,1 .

In particular, for l = 0, 1, we have

∥v− πN,ωα,β,λv∥0,ωα,β,λ ≤ cN−m∥∂mx
{
v(x

1
λ )
}
∥0,ωα+m,β+m,1

∥∂x(v− πN,ωα,β,λv)∥0,ω̃α,β,λ ≤ cN1−m∥∂mx
{
v(x

1
λ )
}
∥0,ωα+m,β+m,1 ,

where ω̃α,β,λ = λ−1(1− xλ)α+1xβλ+1.
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L2ωα,β,λ−projector with α, β ≥ −1.

Define the fractional polynomial spaces for α, β ≥ −1:

Sα,βN,λ := span
{
Jα,β,λi+ℓ (x), i = 0, 1, 2, · · ·,N

}
L2
ωα,β,λ−projector πN,ωα,β,λ : L2ωα,β,λ(I) → Sα,βN,λ , ∀v ∈ L2

ωα,β,λ(I),

(v− πN,ωα,β,λv, vN)ωα,β,λ = 0, ∀vN ∈ Sα,βN,λ.

For special case β = −1, we define the dual fractional polynomial
space of Sα,−1

N,λ as follows:

V−α−1,0
N,λ := span

{
(1− xλ)α+1Jα+1,0,λ

j (x), j = 0, 1, 2, · · ·,N
}
.
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Approximation results

Theorem

For any v(x) such that v(x
1
λ ) ∈ Bm

ωα,β,1(I),m ≥ 1, its orthogonal
projection πN,ωα,β,λv admits the following optimal error estimates:

∥v− πN,ωα,β,λv∥0,ωα,β,λ ≤ cN−m∥∂mx v(x
1
λ )∥0,ωm+α,m+β,1 ,

∥∂x(v− πN,ωα,β,λv)∥0,ω̂α,β,λ ≤ cN1−m∥∂mx v(x
1
λ )∥0,ωm+α,m+β,1 ,

where ω̂α,β,λ = λ−1(1− xλ)α+1xβλ+1.

Remark
It is shown that even if v(x) is singular its projection πN,ωα,β,λv can be
a very good approximation to v(x) if λ is properly chosen such that
v(x1/λ) is smooth or v(x1/λ) ∈ Bm

ωα,β,1(I) for large m.
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Iα,βN,λ-interpolation on fractional Jacobi-Gauss-type points

Let hα,βj,λ (x) be the generalized Lagrange basis function:

hα,βj,λ (x) =
N∏

i=0,i̸=j

xλ − xλi
xλj − xλi

, 0 ≤ j ≤ N,

where x0 < x1 < · · · < xN−1 < xN are zeros in I of Jα,β,λN+1 (x). It is
clear that the functions hα,βj,λ (x) satisfy

hα,βj,λ (xi) = δij.

Let z(x) = xλ. Then zi := z(xi) = xλi , 0 ≤ i ≤ N are zeros of
Jα,β,1N+1 (x), and

hα,βj,λ (x) = hα,βj,1 (z) :=
N∏

i=0,i̸=j

z− zi
zj − zi

, 0 ≤ j ≤ N.
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We define the interpolation operator Iα,βN,λ by

Iα,βN,λv(x) =
N∑
j=0

v(xj)hα,βj,λ (x).

Lemma

For any v(x
1
λ ) ∈ B1,1

α,β , we have

∥Iα,βN,λv∥0,ωα,β,λ ≤ c
(
∥v∥0,ωα,β,λ + N−1∥D1

λv∥0,ωα+1,β+1,λ

)
.

For any v(x1/λ) ∈ Bm,1
α,β(I),m ≥ 1, and 0 ≤ l ≤ m ≤ N+ 1, it holds

∥Dl
λ

(
v− Iα,βN,λv

)
∥0,ωα+l,β+l,λ

≤ c
√

(N−m+1)!
N! (N+ m)l−(m+1)/2∥∂mx

{
v(x

1
λ )
}
∥0,ωα+m,β+m,1 .

For given m,

∥Dl
λ

(
v− Iα,βN,λv

)
∥0,ωα+l,β+l,λ ≤ cNl−m∥∂mx

{
v(x

1
λ )
}
∥0,ωα+m,β+m,1 .
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Interpolation error in L∞−norm

Lemma

If −1 < α, β ≤ −1

2
, v(x1/λ) ∈ Bm,1

α,β(I), m ≥ 1. Then

∥v− Iα,βN,λv∥∞ ≤ cN1/2−m∥∂mx v(x1/λ)∥0,ωα+m,β+m,1 .
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Petrov-Galerkin method for IDEs

Consider the Petrov-Galerkin based Müntz spectral method for IDEs:
Find uN ∈ S0,−1

N,λ (I), such that

(u′N, vN) = a1(uN, vN) + a2(0Iµt uN, vN) + (f, vN), ∀vN ∈ V−1,0
N,λ (I).

Notice the facts

ω1, 1
λ
−2,λvN = λt−λ(1− tλ)vN ∈ V−1,0

N,λ (I), ∀vN ∈ S0,−1
N,λ (I).

We have the equivalent weighted Galerkin form: Find uN ∈ S0,−1
N,λ (I),

such that

(u′N, vN)ω1, 1
λ
−2,λ = a1(uN, vN)

ω1, 1
λ
−2,λ + a2(0Iµt uN, vN)ω1, 1

λ
−2,λ

+(f, vN)
ω1, 1

λ
−2,λ , ∀vN ∈ S0,−1

N,λ (I).
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Theorem

If the coefficients a1 and a2 satisfy

a1 ≤ 0, |a2| <
√
2µeΓ(µ+ 1/2)

2Γ(1/2)
,

or

a1 > 0,
a1
e

+
|a2|Γ(1/2)√

2µeΓ(µ+ 1/2)
<

1

2
.

Then the Müntz spectral approximation problem admits a unique
solution. Furthermore, if the exact solution u(t) such that
u(t

1
λ ) ∈ Bm

ω0,−1,1(I), the following optimal error estimate holds:

∥u− uN∥0,ω0,−1,λ ≤ cN−m∥∂mt u(t
1
λ )∥0,ωm,m−1,1 .
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Müntz spectral method for fractional elliptic equations

{
bu(x)− Dρ

xu(x) = f(x), x ∈ I, 1 < ρ < 2,

u(0) = 0, ux(0) = u1.

Applying Riemann-Liouville integral of order ρ− 1 to the both sides
of the equation, and noticing that

Iρ−1
x Dρ

xu(x) = Iρ−1
x I2−ρ

x uxx = I1xuxx = ux − ux(0) = ux − u1,

we get the following equivalent integro-differential equation:{
ux = b Iρ−1

x u(x)− Iρ−1
x f(x) + c0, x ∈ I, 1 < ρ < 2,

u(0) = 0.

Therefore the Müntz spectral method constructed for IDEs can be
directly applied.
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TFDE


Dα
t u(x, t)− ∂2x u(x, t) = f(x, t), I× Λ, 0 < α < 1,

u(x, 0) = 0,
u(x, t)|∂Λ = 0.

Weak form: given f satisfying 0I
µ/2
t f(x, t) ∈ L2(Ω), find

u ∈ Hµ/2(Ω) :=0Hµ/2(I,L2(Λ)) ∩ L2(I,H1
0(Λ)) such that

A(u, v) = F(v), ∀v ∈ Hµ/2(Ω),

where the bilinear form A(·, ·) is defined by

A(u, v) := (0D
µ/2
t u, tD

µ/2
1 v)Ω + (∂xu, ∂xv)Ω,

and the functional F(·) is given by

F(v) := (f, v)Ω.
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Theorem

For any 0 < µ < 1 and 0I
µ/2
t f ∈ L2(Ω), the problem is well-posed.

Furthermore, if u is the solution, then it holds

∥u∥Hµ/2(Ω) ≲ ∥0Iµ/2t f∥0,Ω.

Let

P0
M(Λ) := PM(Λ) ∩ H1

0(Λ),

Sα,−1
N,λ (I) = span

{
Jα,−1,λ
i+1 (x), i = 0, 1, 2, · · ·,N

}
, α > −1.

L := (M,N),

SαL (Ω) := P0
M(Λ)⊗ Sα,−1

N,λ (I).

Müntz spectral Galerkin method: find uL ∈ SαL (Ω), such that

A(uL, vL) = F(vL), ∀vL ∈ SαL (Ω).
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Theorem
Let 0 < µ < 1,−1 < α ≤ −µ/2. Suppose
u(x, t1/λ) ∈ Bm

ωα,−1,1(I,Hσ(Λ)) ∩ Bm
ωα,−1,1(I,H1

0(Λ)),m ≥ 1, σ ≥ 1.
Then the solution uL of the Müntz spectral approximation satisfies:

∥u− uL∥Hµ/2(Ω)

≲ N
1
2
−m∥∥∥∂mt v(·, t1/λ)∥0,Λ∥∥0,ωα+m,m−1,1

+N
1
2
−mM−σ

∥∥∥∂mt v(·, t1/λ)∥σ,Λ∥∥0,ωα+m,m−1,1

+M−σ∥v∥σ,s +M1−σ∥v∥σ,0

+N−m
∥∥∥∂mt v(·, t1/λ)∥1,Λ∥∥0,ωα+m,m−1,1 .
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Classical elliptic problems

{
−∂2x u(x) = f(x), x ∈ I,
u(0) = u(1) = 0.

Weak form: For f ∈ L2
ω1,4/λ−3,λ(I), find u ∈ B1

ω−1,−1,λ(I), such that

A(u, v) = F(v), ∀v ∈ B1
ω−1,−1,λ(I),

where the bilinear form A(·, ·) is defined by

A(u, v) =
(
∂xu(x), ∂x{ω0,2/λ−2,λ(x)v(x)}

)
,

and the functional F(·) is given by

F(v) = (f(x), v(x))ω0,2/λ−2,λ .
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In order to prove the well-posedness of this problems, we need
following Poincaré inequality:

For all λ ∈ (0, 1], Poincaré inequality in B1
ω−1,−1,λ(I) holds

∥v∥0,ω−1,−1,λ ≤ c∥∂xv∥0,ω0,2/λ−2,λ , ∀v ∈ B1
ω−1,−1,λ(I).

Theorem

For all f ∈ L2
ω1,4/λ−3,λ(I), the discrete problem is well-posed.

Furthermore, if u is the solution, it holds

∥u∥1,ω−1,−1,λ ≤ c∥f∥0,ω1,4/λ−3,λ .
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Müntz spectral method: Find uN ∈ B1
ω−1,−1,λ(I) ∩ S−1,−1

N,λ (I), such that

A(uN, vN) = F(vN), ∀vN ∈ B1
ω−1,−1,λ(I) ∩ S−1,−1

N,λ (I).

Theorem

For all f ∈ L2
ω1,4/λ−3,λ(I), the Müntz spectral discrete problem admits

a unique solution uN, which satisfies

∥uN∥1,ω−1,−1,λ ≤ C∥f∥0,ω1,4/λ−3,λ .

Furthermore, if u(x1/λ) ∈ Bm
ω−1,−1,1(I), then

∥u− uN∥1,ω−1,−1,λ ≤ cN1−m∥∂mx u(x1/λ)∥0,ωm−1,m−1,1 .
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Fractional Jacobi Spectral-Collocation Method for VIEs

Volterra integral equation

u(x) = g(x) +
∫ x

0
(x− s)−µK(x, s)u(s)ds, 0 < µ < 1, x ∈ I := [0, 1].

Consider the fractional Jacobi spectral-collocation method as follows:
find fractional polynomial uλN ∈ Pλ

N(I), such that

uλN(xi) = g(xi) +
(
KuλN

)
(xi), 0 ≤ i ≤ N,

where the collocation points {xi}Ni=0 are roots of J
α,β,λ
N+1 (x),

(
Kφ

)
(xi) =

∫ xi

0
(xi − s)−µK(xi, s)φ(s)ds.
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Theorem

Let u(x) be the exact solution to the Volterra integral equation and
uλN(x) is the numerical solution of the fractional Jacobi
spectral-collocation problem. Assume 0 < µ < 1,−1 < α, β ≤ −1

2 ,
K(x, s) ∈ Cm(I, I) and u(x

1
λ ) ∈ Bm,1

α,β(I),m ≥ 1. Then we have

∥u− uλN∥∞ ≤ cN
1
2
−m(∥∂mx u(x

1
λ )∥0,ωα+m,β+m,1 + N− 1

2 logNK∗∥u∥∞),

where K∗ is a constant only depending on K(·, ·).
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Numerical results: Example 1

▶ We start by considering the IDEs:{
ut = u(t) + 0Iµt u(t) + f(t), t ∈ I, µ ≥ 0,

u(0) = 0,

with the source term f(t) = 1/2t−1/2 − Γ(3/2)t− t1/2 and
µ = 1/2.
The exact solution: u(t) = t1/2.
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Example 2

▶ Consider IDEs with source term

f(t) = 1− 1
Γ(2+µ) t

1+µ − t+
√
3t

√
3−1 − Γ(

√
3+1)

Γ(
√
3+1+µ)

t
√
3+µ − t

√
3

µ = 0.9.

Exact solution: u(t) = t+ t
√
3.
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Example 3

▶ Consider an arbitrary smooth force function f(t) = sin(4πt).

u(t) = 2πt2 + γ3,1t3+µ +
∑

j+kµ>3+µ

γj,ktj+kµ + us(t).

where γj,k are constants, and us(·) ∈ C∞(I).

It is seen that u(t1/λ) ∈ B2(3+µ)/λ−ε
ω0,−1,1 (I) for any ε > 0.
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TFDE

▶ Consider TFDE for µ = 0.1, 0.9. The fabricated exact solution
is:

u(x, t) = sinπt sinπx.

Chuanju Xu许传炬 (Xiamen University) June 20, 2018 ICERM, Brown University Müntz Spectral Methods 45



Motivation
Generalized fractional Jacobi polynomials

Müntz spectral method for some singular problems

Fractional integro-differential equations
Fractional elliptic equations
Time fractional diffusion equations

1 3 5 7 9 11 13 15 17
−16

−14

−12

−10

−8

−6

−4

−2

0

µ=0.1,λ=1,α=−0.5

lo
g

1
0
(E

rr
o
r)

M

 

 

G−L
∞
−NORM

PG−L
∞
−NORM

1 3 5 7 9 11 13 15 17
−16

−14

−12

−10

−8

−6

−4

−2

0

µ=0.9,λ=1,α=−0.5

lo
g

1
0
(E

rr
o
r)

M

 

 

G−L
∞
−NORM

PG−L
∞
−NORM

(a) µ = 0.1 with N = 20 (b) µ = 0.9 with N = 20

1 3 5 7 9 11 13
−13

−11

−9

−7

−5

−3

−1

µ=0.1,λ=1,α=−0.5

lo
g

1
0
(E

rr
o
r)

N

 

 

G−L
∞
−NORM

PG−L
∞
−NORM

1 3 5 7 9 11 13
−13

−11

−9

−7

−5

−3

−1

µ=0.9,λ=1,α=−0.5

lo
g

1
0
(E

rr
o
r)

N

 

 

G−L
∞
−NORM

PG−L
∞
−NORM

(c) µ = 0.1 withM = 20 (d) µ = 0.9 withM = 20

Figure: Error decays of the numerical solutions with respect to the
polynomial degrees for the smooth exact solution.

Chuanju Xu许传炬 (Xiamen University) June 20, 2018 ICERM, Brown University Müntz Spectral Methods 46



Motivation
Generalized fractional Jacobi polynomials

Müntz spectral method for some singular problems

Fractional integro-differential equations
Fractional elliptic equations
Time fractional diffusion equations

TFDE

▶ Consider TFDE with smooth force function
f(x, t) = sin(πx)sin(πt), the exact solution is unknown.

Serve the numerical solution calculated withM = 40,N = 100
as the “exact” solution.
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Example 4

▶ Consider the elliptic problem{
−∂2x u(x) = f(x), x ∈ I,

u(0) = u(1) = 0,

with two source terms:
(i) f(x) = π2 sin(πx)
(ii) f(x) = 12

169x
−14/13

Case (i): u(x) = sin(πx)

Case (ii): u(x) = x12/13 − x
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Case (i) with smooth solution
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Case (ii) with limited regular solution
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with λ = 1.
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Concluding remarks

- We have developed and analyzed a fractional spectral method for a
kind of fractional integro-differential equations.

- The proposed method makes use of the fractional polynomials, also
known as Müntz polynomials, constructed through a transformation
of the traditional Jacobi polynomials.

- If λ is taken to be 1/q with q being integer, then the Müntz
polynomial space {Pλ

N(I) = span{1, xλ, x2λ, · · · , xNλ} possesses good
approximation property: the best approximation to smooth functions
is of exponential convergence w.r.t. N like the traditional polynomials,
although the convergence is slightly slower. In fact P⌊N/q⌋(I) ⊂ Pλ

N(I).
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- The most remarkable feature of the method is its capability to
achieve spectral convergence for the solution with limited regularity.

- The choice of λ is also of importance for the efficiency of the
method, which can be made according to the following strategy:

Case I: if the solution is smooth, the optimal value is λ = 1;

Case II: if µ is a rational number p/q, the best choice is λ = 1/q; if µ
is an irrational number, there is no suitable value of λ to make u(t1/λ)
smooth. In this case, we can take λ = 1/q with a reasonably large q
such that u(t1/λ) is smooth enough.

Chuanju Xu许传炬 (Xiamen University) June 20, 2018 ICERM, Brown University Müntz Spectral Methods 53



Motivation
Generalized fractional Jacobi polynomials

Müntz spectral method for some singular problems

Fractional integro-differential equations
Fractional elliptic equations
Time fractional diffusion equations

Implementation issues

- Nonlocal terms must be evaluated by using numerical quadratures.
For example, in the Muntz spectral method for the integro-differential
equation, evaluation of the integral term (0Iµt uN, vN) makes use of the
zeros of the orthogonal polynomial and the Gauss weights associated
to the nonclassical weight function (1− x

1
λ )µ.

- For the classical orthogonal polynomials, e.g. Jacobi, Laguerre, and
Hermite polynomials, formulae for the coefficients in the three-term
recurrence are known in closed form. However for the nonclassical
weight functions, their recurrence coefficients are not explicitly
known. In this case, numerical techniques such as Stieltjes procedure
or Chebyshev algorithm will be used.
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- Chebyshev algorithm consists of calculating the desired coefficients
from a three-step algorithm and the moments of the underlying weight
function, i.e.,

Mr =

∫ 1

0
xr(1− x

1
λ )µdx.

Making the variable change x = tλ gives

Mr = λ

∫ 1

0
tλr+λ−1(1− t)µdt = λB(λ(r+ 1), µ+ 1).

- As pointed in [Esmaeili et al. 2011] the calculation of the moments
Mr can be numerically problematic when the number of points is
large: in order to obtain the double precision entries of the matrices,
one would have to perform with about 40 digits operations.
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Future extensions

Possible extensions

- Higher dimensional problems

- Other equations having corner singularities

- Using Müntz polynomials in the FE framework, i.e., Müntz spectral
element methods

- Make use of more general fractional polynomial space:

span{1, xλ1 , xλ2 , · · · , xλN}.
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Thank you！
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